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Abstract – Distributed target tracking and identification is 
an important element of operational environments. In this 
paper, we develop a fidelity metric of track purity 
assessment using confusion matrix (CM) fusion. We assess 
individual distributed tracker track purity associations for 
a multitarget scenario from two platforms. The fidelity 
metric for each tracker is combined using the CM fusion 
for track decision-level analysis to aid in the joint 
assessment of the track quality. CM fusion enables the 
estimation of the combined quality of the distributed 
tracking scenario and can be used for any fidelity metrics 
based on cardinality. In a distributed multisensor 
multitarget scenario, we demonstrate the fidelity metric 
CM fusion for enhanced tracking performance evaluation.  

Keywords: Track Metrics, RMS, Confusion Matrix Fusion 

1 Introduction 
In a dynamic targeting scenario, there are hosts of 
algorithms that affect performance: sensor registration, 
measurement-to-track (M2T) assignment, track-to-track 
(T2T) association, sensor management, and ultimately, the 
user. In many operational contexts, the platform, sensor, 
and algorithms for target tracking and identification (ID) 
are designed together which requires novel metrics for 
distributed tracking [1]. Based on M2T algorithms [2, 3], 
tracking evaluation [3, 4], T2T developments [5, 6], and 
simultaneous tracking and ID (STID) approaches [7, 8, 9, 
10], we seek a method for distributed tracking evaluation.  

The goal of target tracking is to associate 
measurements of moving objects. There are many tracking 
approaches that we overviewed in previous publications 
[11] that included linear and nonlinear as well as Gaussian 
and non-Gaussian approaches [12]. The focus has been on 
comparative analysis of tracking approaches with interest 
in metrics and performance.  Examples of approaches 
have been developed for applications [13], radar GMTI 
and HRRR tracking [14, 15, 16, 17] and the nonlinear-
estimation toolbox [18, 19, 20].   

In Fusion11, we overviewed many contributors to 
both tracking approaches and metrics for tracking 
performance evaluation (TPE) [21]. Highlighted were the 
contributions from K. C. Chang, and S. Mori, and C. Y. 
Chong [22, 23, 24] along with X. R. Li [25], of which a 
series of TPE contributions have been reported. In 2011, 
tracking metrics were overviewed [26] with fidelity 
metrics [27, 28]. Fidelity track metrics include the 

cardinality rankings as many of the fidelity metrics are 
normalized without units. The fidelity metrics include 
such issues as track association that we use here. For the 
analysis, we use the track purity [29] as method for track-
to-track association, with the interest of distributed fusion 
analysis. However, we need to preface the distributed 
track fusion evaluation concept based on the operational 
need.  

From a collection of tracking information from 
different platforms (e.g., aerial), there is an operational 
constraint forcing distributed tracking. From Figure 1, 
there are three types of fusion capabilities of signal, 
feature, and decision. [30] While there is an interest to 
process all the data in signal-level fusion, such as image 
fusion [31], the transmission of the data is limited by 
communications bandwidth. For feature analysis, there are 
concerns of feature definitions, classifier coordination, and 
robust methods of distributed feature-level fusion analysis. 
[32, 33] Recently, Mori and Chong [34] developed a 
usefully assessment of feature-level fusion for tracking 
and ID. Since many tracking platforms are designed with 
the classification and ID analysis processed on-board, 
information is preprocessed and sent to the fusion center 
for decision-level fusion [35] without sending signal or 
feature data. The reports would indicate the measurements 
(e.g., detections), with the notions of allegiance ID.   

 
Figure 1.  Signal, Feature, and Decision Fusion. 
 
For situation assessment [36], there is a need for 

distributed TPE of the operating conditions of sensors, 
targets, environments, and algorithms [37].  In addition, 
TPE includes target detection, recognition (type), 
classification (category), and identification (allegiance). 

2012



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information  Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number  

1. REPORT DATE 
JUL 2012 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2012 to 00-00-2012  

4. TITLE AND SUBTITLE 
Distributed Tracking Fidelity-Metric Performance Analysis Using
Confusion Matrices 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Research Lab,Information Directorate,Rome,NY,13441 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Presented at the 15th International Conference on Information Fusion held in Sinapore on 9-12 July 2012.
Sponsored in part by Office of Naval Research and Office of Naval Research Global. 

14. ABSTRACT 
Distributed target tracking and identification is an important element of operational environments. In this
paper, we develop a fidelity metric of track purity assessment using confusion matrix (CM) fusion. We
assess individual distributed tracker track purity associations for a multitarget scenario from two
platforms. The fidelity metric for each tracker is combined using the CM fusion for track decision-level
analysis to aid in the joint assessment of the track quality. CM fusion enables the estimation of the
combined quality of the distributed tracking scenario and can be used for any fidelity metrics based on
cardinality. In a distributed multisensor multitarget scenario, we demonstrate the fidelity metric CM
fusion for enhanced tracking performance evaluation. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a  REPORT 
unclassified 

b  ABSTRACT 
unclassified 

c  THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



The coordination from detection to identification (and 
fingerprinting) is to assess the target features for target 
type, category, and allegiance from both the target 
signature and the target movements to distinguish which 
target - if there are related signatures. TPE includes many 
challenging tracking scenarios such as highly 
maneuvering and dense target environments.  

Key developments in methods for STID include the 
joint-belief probability data association filter (JBPDAF) 
[10], interacting multiple model (IMM) [38, 39], set-based 
IMMJPDA [40], multiple hypothesis tracker (MHT) [41], 
nonlinear methods [42, 43, 44] and evidential reasoning 
methods [10, 45]. Performance evaluation for current 
nonlinear methods is needed to address environmental 
constraints [46, 47], optimal algorithm parameters [48, 49, 
50], and methods that aid sensor management [51, 52] 
such as in a distributed scenario. 

The track-to-track distributed assessment utilizes a 
track history (i.e., tracklets or small tracks) [13, 53] which 
requires association of the small tracks into the general 
TPE [54]. Distributed tracking can be done from the 
sensors-to-targets or moving-target to stationary platforms 
[55]. We thus perform individual track assessments to 
determine the track purity from each platform, from which 
we can conduct a distributed track purity assessment using 
the confusion matrix (CM) fusion.  

CMs are used extensively in target ID assessment 
which occurs in STID methods [56, 57, 58]. For the case 
of the decision-level fusion (DLF) [35, 37, 59, 60] we 
have developed a method for confusion-matrix fusion [61] 
but it can also be used in the track-to-track assessment for 
distributed applications.  
 This paper develops the CM distributed fusion TPE 
using the CM for track purity combination. Section 2 
describes the tracking metrics. Section 3 overviews the 
JBPDAF. Section 4 describes the CM DLF. Section 5 
shows a performance analysis for a multisensor 
multitarget scenario and Section 6 draws conclusions.  
 
2 Tracking and Estimator Metrics 
Tracking methods include many opportunities for analysis. 
Some metrics are listed below: [3] 
 
Metric  Description    
Absolute Track Quality  Mean square position, velocity, 

acceleration error 
Relative Track Quality Mean square kinematic error relative to 

sensor covariance 
Track Life-Time  Total time target is in track 
Relative Track Life-Time Total time target in track, relative to length 

of track-lets 
Track Length Distance over which target is tracked 
Relative Track Length  Distance over which target is tracked 

relative to maneuverability 
Track Purity Percent of associations of dominant track 

over lifetime  
Track Density    Number of targets track per area 
Track Continuity  Number of individual targets associated 

with a given track 
 

We have organized the tracking metrics into two types: 
accuracy and fidelity metrics [27]. For information fusion 
performance evaluation, tracking is one element in object 
assessment. We plot, in a Fishbone diagram [62, 63] in 
Figure 2, the five Quality of Service (QOS) information 
fusion metrics: accuracy, throughput, timeliness, 
confidence, and cost.  

 
Figure 2. Tracking and Identification Joint Association. 

2.1 Track Purity  
Track purity (TP), a concept coined by Mori et. al. [29], 
assesses the percentage of correctly associated 
measurements in a given track, and so evaluates the 
association/tracking performance. The TP measure of 
performance (MOP) is not explicitly dependent on 
detection performance, but it is dependent on the setting of 
association gates (which depends on the probability of 
detection Pd) and the ground truth platform density. TP 
measures the consistency with which a track is updated 
with measurements from a single ground truth platform or 
a distributed set of ground truth platforms. 

Correctional local MOPs, such as TP, measure how well 
the tracks are being associated with measurements of 
ground truth platforms. The TP MOP is based on the 
calculation of a confusion matrix C for which the elements 
Cji are constructed by counting reports.  Given the tracks t1 
, ..., tb and a set of ground truth platforms g1 , ..., ga , C is: 
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Here, Cji is the number of reports originating from 

ground truth platforms gi which were assigned to track tj (i 
= 1, ..., a; j = 1, ..., b) by the tracker.  Also, C0i (the 
“ambiguity vector”) consists of the number of reports that 
could not be assigned to any ground truth platform (i = 1, 

2013



..., a).  When Cji is large, a strong association between tj 
and gi is implied. 
 The TP measure can be estimated for each single 
track, but is more meaningful when statistics of the TP 
quantity are calculated. A recommended statistic is the 
Weighted Average of Track Purity (WATP) [21] taken 
over all tracks and ground truth platforms. The WATP 
statistic should be calculated separately for each platform. 
It has a particularly convenient form if the weight given to 
each track is the number of measurements for that track, 
and if the weight given to each ground truth platform is 
the number of measurements originating from that ground 
truth platform.  The resulting definition of the WATP, for 
track tj, is as follows: 

 WATP [t j]  =  
 max i
1 ≤ j ≤ b

  C j i

 ∑
i = 1

 b

  ∑
i = 1

 a

  C j i
  (1) 

The following elements are needed to compute Track 
Purity or WATP: the list of correct (CO) track numbers 
for which TP will be computed (provided by the 
operator), the valid time and the ground truth platform 
number to which the CO track is attached, and the time 
stamp and the ground truth platform number. 
 The CM is the starting point of many MOPs and its 
construction requires a lot of computation.  Basically, we 
have to associate each correct track report to a target in the 
ground truth.  The choice of association can be determined 
from positional and/or ID data. The association will take 
as argument a track T at the time t, and the complete lists 
of tracks and ground truth’s targets resulting in a CM. 
Here is a procedure to construct the confusion matrix:  

 

a. Collect data to have all CO track reports for each track and 
each history point of all targets in the ground truth, 

b. Initialize the CM by filling each entry with zeros,  
c. For each track, process all CO track reports by: 

1) Using an association function, find the corresponding 
target in the ground truth, and 

2) Adding 1 to the related entry of the confusion matrix. 
 

3 Track and ID Data Filtering 
Kalman filters are the baseline for tracking and are 
optimal if the process and measurement equations are 
linear and the noise is Gaussian. To enhance the tracker 
performance in clutter, detection can be improved with 
classification information; however there is a need to 
associate measurements to multiple tracks. We thus use 
the JBPDAF using classification information from 
evidential reasoning for a belief filter to determine ID. 
  
3.1 Belief Filter for Simultaneous Tracking and ID 
Consider an environment in which a multiple platforms 
are monitoring multiple moving targets with stationary 
clutter. By assumption, the tracking sensor is able to detect 
target signatures. Assume that the 2-D region is composed 
of T targets with f features. Dynamic target measurements 

z are taken at time steps k, which include target kinematic 
and identification features z(k) = [x t (k), f 1,… f n]. Any 
sensor can measure independently of the others, and the 
outcome of each measurement may contain kinematic or 
feature variables indicating any target. A final decision is 
rendered as to which [x, y] measurement is associated with 
the target-type. The multilevel feature fusion problem is 
formulated and solved by using the JBPDAF [10]. For the 
symmetric-target case, the "association rule" uses the 
measurement with the highest target probability.  
 The target state and true measurement are assumed to 
evolve in time according to: 

x(k + 1) = F(k) x(k) + v(k)  (2) 

z(k) = H(k) x(k) + w(k) (3) 

where v(k) and w(k) are zero-mean mutually independent 
white Gaussian noise sequences with known covariance 
matrices Q(k) and R(k), respectively. We assume each 
target has a separate track (multiple state equations), 
initialized at an initial state estimate x(0), contain a known 
number of targets determined from the scenario, and have 
associated covariances. 

The JBPDAF devotes equal attention to every validated 
kinematic or ID measurement and cycles through 
measurements until a believable set of object IDs is 
refined to associate one object per track. The belief 
measurement Bel tk  = M • Bel tk-1, derived from the 
classification data, represents the belief update states of 
the ID measurements. The M matrix is the Markov 
transition matrix, which represents the similarity of 
objects. The similarity of objects represents how the belief 
in an object type may be related to other objects of the 
same or different type. 

The M2T association probabilities are computed 
across the objects and these probabilities are computed 
only for the latest set of measurements. The conditional 
probabilities of the joint track-ID association events 
pertaining to the current time k are defined as θjotk, where 
θjotk is the event that object center-of-gravity measurement 
j originated from object o and track t, j =1, ..., mk; o = 0, 1, 
…, On, where mk is the total number of measurements for 
each time step and On is the unknown number of objects. 
Note, for purposes of tracking and ID, we define i = 1, … , 
mk for the entire measurement set while j = 1,…, mk is for 
tracking and o = 1…, mk is for object ID. 

A validation gate for each object bounds the believable 
joint measurement events, but not in the evaluation of 
their probabilities. The plausible validation matrix: Ω = 
| ω jt | is generated for each object of a given track which 
comprises binary elements that indicate if measurement j 
lies in the validation gate of track t.  The index t = 0 
represents "the empty set of tracks" and the corresponding 
column of Ω includes all measurements, since each 
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measurement could have originated from clutter, false 
alarm, or true object [10].  

For a track event, we have: 

| ω̂jt(θ)|  =Δ 
⎩⎪
⎨
⎪⎧ 1  if θi

jt ∈ θ; [z]i
k ⊂ t

0 otherwise
   (4) 

where measurement [z]i
k originated from track t 

 
For an ID-belief event, which is above a predetermined ID 
threshold,  

 | ω̂oO(θ)|  =Δ 
⎩⎪
⎨
⎪⎧ 1 if θi

oO ∈ θ; [Bel]
i
Ok ⇔ o

 0 otherwise
 (5) 

where measurement [Bel]
i
Ok is associated with object o. 

Since the JBPDAF is tracking multiple objects, o, 
assuming one for each track, t, it has to determine the ID-
belief in each object from a known database comparison. 
While these IDs are processed over time to discern the 
object, for each measurement, JBPDAF must determine if 
the track-ID measurements are plausible.  JBPDAF uses 
the current ID-beliefs to update the association matrix.  If 
the belief in the object is above a threshold, JBPDAF 
declares the measurement i, to be plausible for the target.  
3.2 Data Association 
Since we have assessed the continuous-kinematic 
information and the discrete-classification event, we can 
now assess the intersection of kinematic and ID 
information for STID. Note, ID goes beyond object 
detection, recognition, and classification, to associate two 
objects of the same class with a specific track. A 
kinematic-ID joint association event consists of the values 
in Ω corresponding to the associations in θjot, 

 | ω̂jot(θ)|  =Δ 
⎩⎪
⎨
⎪⎧ 1  if θi

jot ∈ θ *
0 otherwise

   (6) 

where (*) measurement [z]i
k originated from track t with a 

[Bel]
i
ok for a given Oot and 

  ω̂jot(θ) =  ω̂jt(θ) ⊕ ω̂oO(θ). (7) 

Note, we define the indices as jot since O is the number of 
objects which is equal to the number of tracks. 

These joint events will be assessed with “β” weights [2] 
to determine the extent of belief in the associations. To 
process the believability of track associations, augmented 
with the ID information, we set up a matrix formulation.  
For example, we have a set of kinematic measurements zi 
with a Belo and put them into the event association matrix 
as illustrated in Figure 3. The upper left of a box 
represents the track information where a “1” indicates the 
kinematic measurement lies within a gated position 
measurement. The lower right represents the belief in an 
object type of any class except the unknown class where a 
believable object receives a “1”.  Columns are for tracks 

and rows for measurements.  These generalized equations 
propagate ID-filtered, predicted ID measurements in time. 
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Figure 3. Tracking and Classification Joint Association. 
 

 JBPDAF processes event matrices with an “AND” 
function in the case of joint association allowing for 
plausible events from either the track or classification. To 
determine the event plausibility, JBPDAF uses the 
validation region for track measurements and uses a 
threshold, or classification gate, to determine a target-type 
ID match associated with a given track. Figure 4 illustrates 
the “AND” function. Note, JBPDAF rejects non-
believable measurements and measurements that lie 
outside the kinematic validation gate. 

0

1
0

Kinematic Reject
Track/ID Reject
Belief ID Keep

0

0
0

Kinematic Reject
Track/ID Reject
Belief ID Reject

1

1
1

Kinematic Keep
Track/ID Keep
Belief ID Keep

1

0
0

Kinematic Keep
Track /ID Reject
Belief ID Reject

 
Figure 4. Believable Events for the association matrix. 

 
 JBPDAF sets up the state and probability values for 
the determination of the weights assigned to these 
associations.  A track-ID association event has [2] 

 i) A single object-type measurement from a source: 

   ∑
o = 0

On

    ω̂jot(θ
i
jot) = 1   ∀ j  (8) 

ii) And at most one object-type measurement ID 
originating from a object for a given track:  

 δt(θ) =
Δ ∑

j = 1

mk

    ω̂jot(θ
i
jot)   ≤ 1     (9) 

The event matrices, Ω̂ for each track, corresponding to ID 
events can be done by scanning Ω and picking one 
unit/row and one unit/column for the estimated set of 
tracks except for t = 0. In the case that JBPDAF has 
generated event matrices for an estimated number of 
tracks with different object types, JBPDAF needs to assess 
the combination of feature measurements to infer the 
correct number of tracked objects that comprise the set.  
The binary variable δt( θjotk) is called the track detection 
indicator [2] since it indicates whether a measurement is 
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associated with the object o and track t in event θjotk, i.e. 
whether it has been detected. The measurement 
association indicator 

  τj(θjotk) =
Δ ∑

j = 1

mk

    ω̂jot( θjotk)  (10) 

indicates measurement j is associated with the track t in 
event θjotk. The false measurements in event θ are: 

 φ(θ) =  ∑
j -1

m

  [ 1 -  τj(θ) ]   (11) 

The joint association event probabilities are, using Bayes' 
formula: 

P{θ(k)|Zk} = P{θ(k)|Z(k),m(k),Zk -1}  

                = 
1
c p[Z(k) | θ(k),m(k),Zk -1] P{θ(k) | m(k)}  

                =  
1
c ∏

j = 1

m(k) - φ(k)

  V {ftt(k) [zj(k)]}τj  (12) 

where c is the normalization constant. 
 
The number of M2T assignment events θ(k) is the number 
of targets to which a measurement is assigned under the 
same detection event [m(k) - φ].  The target indicators 
δt(θ) are used to select the probabilities of detecting and 
not detecting events under consideration. 

3.3 Fused Track and ID State Estimation 
Assuming the targets conditioned on the past observations 
are mutually independent, the decoupled state estimation 
uses the marginal association probabilities, which are 
found from the joint probabilities by summing all the joint 
events in which the marginal track and classification 
events result.  The beta weights [2] are: 

  β
t
jok =

Δ P{θjotk
 | Zk}  = ∑

θ

 

  P{θjotk | Zk}ω̂jo(θjotk) (13) 

JBPDAF decomposes the object-state estimation with 
respect to the object location of the latest set of validated 
belief-set and kinematic-set measurements. For each object 
measurement, we use the total probability theorem to get the 
conditional mean of the state at time k as: 

X^  t
k|k = ∑

i = 0

 
m

o
k

  X^  ti
k|k βti

k , (14) 

where X^  t
k|k is the updated state conditioned on the event that 

the ith validated object measurement is correct for track t.  
The covariance propagation for each track t is:  

 Pt
k|k-1 = Ft

k-1 Pt
k-1  (Ft

k-1)T  + Q
_ t

k-1, where Q
_

 k = 
⎣⎢
⎡

⎦⎥
⎤Qk 0

0 Bk
 

  We can obtain the innovation covariance Sk with the 
associated Rk and measured Dk by: 

 St
k = H

ot
k  Pt

k|k-1 (H
ot
k )T  + R

_
 tk, where R

_
k = 

⎣⎢
⎡

⎦⎥
⎤Rk 0

0 Dk
 

Since Sk is the innovation covariance update, we can use Sk 
to gate measurements based on the uncertainty with the 
associated track and IDs. 

Validation: At k, two measurements are available for 
object o for a given track t: z

T
k-1, and z

T
k, from which 

position, velocity, pose, and ID features can be extracted 
from the belief track vectors. Validation, based on track 
and ID information, is performed to determine which track-
belief measurements fall into the kinematic region of 
interest: 

 (zt
k - ẑ

lt
k|k-1)T [St

k]-1 (zt
k - ẑlt

k|k-1) ≤ γ   for l = 1 … m
o
k (15) 

where γ is a validation threshold obtained from a χ2 table 
and Sk stands for the largest among the predicted track 

belief covariance, i.e., det(Sk) ≥ det(St
k) for t =  1, 2,...,n 

where n is the number of states.  The combined predicted 
track belief, ẑk|k-1, is given by E{zk|{β

s}s
o = 1, Zk-1} where s 

is the set of object beliefs for a track. 
Data association for βti

l  : Data association performed for 
each belief object-track is similar to that in PDA and the 
details can be found in [2] for the association probabilities 
for l validated object measurements  mo

k, PG assessing the 
probability that augmented belief track measurements fall 
into the validation region, and PD representing a detection 
probability. For the JBPDAF case, we vary the innovation 
covariance (Sk), PD, PG proportionally to the sensor 
manager collection resolution (i.e., higher resolution → 
higher PD, higher PG, and lower Sk). The lower Sk for the 
higher resolution is a result of changing the prediction, 
which results after a few track instances. The volume of the 
validation gate is 

 Vk = Cd γd/2 |Sk| 1/2, (16) 

where Cd is the unit hypersphere volume of dimension d, 
the dimension of the augmented belief-track measurement. 

Kinematic belief-probabilistic update: The object 
belief-probabilistic track update is performed as a full rate 
system to combine the state, innovation, and covariances. 

 X^ t
k|k = X^ t

k-1|k-1 + W t
k ∑

l = 1

m
o
k

  βt
lk ν

t
lk   (17) 

and     Pt
k|k = β t

0 Pt
k|k-1 + (1 - β t

0) P*
k|k +  

          W t
k 
⎣
⎢
⎡

⎦
⎥
⎤

∑
l = 1

m
o
k

   β t
lk ν

t
lk [ν

t
lk]

T - νt
k[ν

t
k]

T  (Wt
k)

T (18) 

where,  P*
k|k = [ ] I - W t

k H
ot
k  Pt

k|k-1  (19) 

 Wt
k = Pt

k|k-1 [H
ot
k ]T (St

k)-1   and νk = ∑
l = 1

m
o
k

  β t
lk νt

lk  (20) 
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where H
ot
k  is the measurement matrix that is calculated for 

each object pose, φ, and estimated position of track t. 
 
4 Decision Level Fusion (DLF) Method 

The WATP decisions are stored in a CM. For initial 
track performance, these estimates are treated as priors 
[61]. Decisions from multiple platforms with different 
geometric perspectives are fused using the Decision Level 
Fusion (DLF) technique. Assume that we have two 
platforms each with a WATP described in a CM 
designated as CA and CB. The elements of a CM are c i j = 
Pr{WATP decides track object oj when track object oi is 
true}, where i is the true object track, j is the assigned 
track class, and i = 1, …., N for N true tracks. The CM 
elements can be represented as probabilities as ci j = Pr{ z 
= j | oi} = p{ zj | oi}. To determine an track declaration, we 
need to use Bayes’ rule to obtain p{oi | zj} which requires 
the track priors, p{oi}. We denote the priors and 
likelihoods as column vectors: 

 

p(o−)  =  

⎣
⎢
⎡

⎦
⎥
⎤p(o1)

p(o2)
 :

p(oN)

    ;   p(z j | o−)  =  

⎣
⎢
⎡

⎦
⎥
⎤p(z j | o1)

p(z j | o2)
 :

p(z j | oN)

 . (21) 

 

For M decisions, a confusion matrix would be of the form 
 

 C  =  

⎣
⎢
⎡

⎦
⎥
⎤p(z 1 | o1) p(z 2 | o1)  .. p(z M | o1)

 p(z 1 | o2) p(z 2 | o2)  .. p(z M | o2)
… … ⋱ …

 p(z 1 | oN) p(z 2 | oN)  .. p(z M | oN)

 . (22) 

 
The joint likelihoods are similar column vectors, where we 
assume independence for two confusion matrices A and B 
(denoted here as superscripts), 
 

 p(z Aj , z Bk  | o−)    =  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤p(z Aj  | o1) ∙ p(z Bk  | o1)

 p(z Aj  | o2) ∙ p(z Bk  | o2)
…

 p(z Aj  | oN) ∙ p(z Bk  | o N)

 , (23) 

 

where k is used to distinguish between the different 
assigned object tracks between the two confusion matrices 
when the CMs are not symmetric. The independence 
assumption is valid if the sensors, decision analysis, or the 
noise from sensor-to-target perspectives are different.  
 Using the priors and the likelihoods, we can calculate a 
posteriori from Bayes’ Rule  

 p(o− | z Aj , z Bk ) =  
p(z Aj , z Bk  | o−)  p(o−)

 ∑
i= 1

N
  p(z Aj , z Bk  | o−)  p(o−) 

 . (24) 

Note that there are similar column matrices for the 
posteriors p(o− | z j ) and p(o− | z Aj , z Bk ).  A decision is made 
using the maximum likelihood estimate  
 

 d i = argmax
j; k

  p(o i | z Aj , z Bk )  , (25) 
 

where the final decision of the true object track i is 
determined from the largest value from the vector.   
 Note that the subscripts indicate the value of a variable 
and the superscripts indicate the track source. For 
example, zA = z3 indicates that tracker A made a decision 
z3; where tracker A might be the first track and decision z3 
might be track type. The absence of a superscript implies 
an unspecified single source. We represent the particular 
states from each tracker with the subscripts a and b such 
as z A = z Aa  indicating that tracker A’s decision was z a.   
 For the developments of the pseudo code, shown below 
in Figure 5, we shorten the notation to zA = za, while 
keeping an update of the CM source A or B. Inputs to the 
fuser are the decisions of trackers A and B, i.e., za and zb 
respectively. The output decision d is based on a 
maximum a posteriori probability (MAP) decision rule, 
where p(o− | z a, z b) is posterior, p(o−) is the prior 
probabilities, and CA and CB are the WATP CM (one for 
each source). 
  

 
Figure 5. Pseudo code for DLF with Confusion matrix. 
 
Pseudo code for DLF is represented as: 
• za = za and zb = zb are the integer decisions between 1 … M 

of trackers A and B, respectively 

• pObar  = p(o−) is a vector of priors, represented as either 
constants or input variable 

• CA  = CA and CB  = CB are the confusion matrices derived 
from trackers A and B, respectively 

• pZaObar = p(za | o−) and pZbObar = p(zb | o−) are the 
likelihoods as extracted columns from the confusion 
matrices [pZaObar = CA(:,za); and pZbObar = CB(:,zb)] 

• pZaZbMbar  = p(za , zb | o−) is the joint likelihood derived 
from the point-wise product of the tracker likelihoods 
(pZaZbObar = pZaObar .* pZbObar); 

• pObarZaZb = p(o− | z a, z b) =  
p(z a, z b | o−)  p(o−)

 ∑
i= 1

N
  p(z a, z b | o−)  p(o−) 

 

− the numerator is:  
posteriorNum = pZaZbObar .* pObar; 

− the denominator is:  
 posteriorDen = sum(posteriorNum); 

− pMbarZaZb = posteriorNum / posteriorDen; 

function [d, pObarZaZb] = fuseCMdecisions(za, zb, Obar) 
CA = getConfusionMatrix(1);  
CB = getConfusionMatrix(2);  
pZaObar = CA(:,za); 
pZbObar = CB(:,zb); 
pZaZbObar = pZaObar .* pZbObar; 
posteriorNum = pZaZbObar .* pObar; 
posteriorDen = sum(posteriorNum); 
pObarZaZb = posteriorNum / posteriorDen; 
[junk, d] = max(pObarZaZb); 
return
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• d = max(pObarZaZb), which is the fused decision, d i ∋ p(o i 
| z a, z b) ≥ p(o i | z a, z b) ∀ i, j where i, j ∈ 1, …, N. 

5 Distributed Performance Analysis 
For this analysis, we first developed a toolbox of 
performance evaluation methods [18-20]. We compared 
multiple scenarios for analysis of closely spaced targets 
with linear and nonlinear movements.  Here we present 
the case of the nonlinear motions to demonstrate a 
distributed track fusion assessment using the belief filter. 
Figure 6 shows the scenario with clutter and Figure 7 
shows the resulting track outputs from one sensor.  
 The scenario was generated using the trajectories 
shown and variations in the clutter. Two elements of 
clutter can be induced from the spurious measurements for 
a sensor. Since distributed sensors have different 
perspectives, the measurement clutter was altered relative 
the perspective. For example, Sensor 2 has a better 
perspective of Target 3, which has a higher WATP.    
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Figure 6.  Scenario with Clutter. 

 

2000 2500 3000 3500 4000 4500
0.94

0.96

0.98

1

1.02

1.04

1.06
x 10 Perfect tracks - black(100), red (150)

X

Y

 
Figure 7.  Sensor 1 track result with covariances. 

 
 Figure 8 and 9 show the CM for the individual 
sensors and the DLF combined result (using the method 
shown in Section 4 [61]) which improves the distributed 
track purity assessment. It is noted that the use of the CM 
fusion does improve the overall assessment (sum of 
diagonals), but may result in poorer performance for a 
case in which a closer sensor has a better STID analysis 
(as noted from Sensor 1, Track 1 going from 0.98 to 0.97). 
Future work requires a more intelligent method of score 
fusion over different scenarios to improve distributed 
analysis based on the credibility of the sensor/track 
outputs. For example, more significant degradations 

happen when fusing a result with 0.98 and 0.50, of which 
relying on 0.98 should be the choice for a more credible 
sensor. Other concerns relate to different CM sizes, sensor 
update rate, and track algorithm choice, which all affect a 
distributed track fusion analysis. 
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Figure 8.  WATP CM from Sensor 1 and Sensor 2. 
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Figure 9.  Fused WATP. 

6 Discussion and Conclusions 
Building on many developments in track performance 
evaluation, we developed a metric for distributed track 
fusion assessment by integrating track purity from track 
segments from distributed platforms. We used the novel 
confusion-matrix fusion approach for the analysis. Future 
work will explore metrics for sensor management, net-
centric solutions, nonlinear trackers, and exploration of 
non-physics-based tracking scenarios such as social 
networks [64], of which newer methods are needed. 
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